Training takes time: Plasticity in adults’ dyslexic brains

Zachau S.1,2, Heinänen K.1,2, Ervast L.1,2, Suominen K.2, Korpilahti P.1,2,3

1Department of Finnish, Information Studies and Logopedics, University of Oulu, Finland
2Cognitive Laboratory, Clinical Neurophysiology, Oulu University Hospital, Finland
3School of Finnish and General Linguistics, University of Turku, Finland

Introduction

• Impaired auditory processing: critical role in dyslexia
 ➢ as indexed in dyslexic adult MMN and MMF studies:
 - Baldeweg et al. (1999): decreased & delayed MMN peaks to frequency (not duration) changes in tones
 - Schulte-Körne et al. (1999), (2001):
 ➢ increased MMN to temporal changes in tonal patterns (duration) and decreased (UMMN to synthetic speech (not frequency changes in tones) (2001)
 - Kujala et al. (2003): decreased MMN to sound-order reversal (tones) with following sound (< backward masking interference), no difference to single tones / preceding additional sound
 - Renvall & Hari (2003): diminished left-ear hemispheric MMFs to tones (frequency)
 ➢ controversy discussion:
 basic auditory impairment or specific phonological dysfunction?

Method

Subjects & Setup

• young dyslexic adults, n=10, mean age: 18.6 years, 6 male & 4 female (n=5 in recording session 4, 1 male & 4 female)
• four electrophysiological recording sessions:
 1. baseline (before training)
 2. after 6 months of training
 3. after 3 months of intermission
 4. after another 6 months of training
• 13 Ag/AgCl-electrodes according to the extended 10-20-system:
 Fz, Cz, F3, F4, F7, F8, T3, T4, C3, C4, P3, P4, M1, M2 (DEG & EEG)
• Synamps, Scan (Neuroscan), 1000Hz sampling rate, on-line filters: band-pass 0.5-200Hz, off-line filters: band-pass 0.6-200Hz, on-line reference: FCz, off-line re-referenced: linked mastoids, ocular corrected, artifacts rejected if +/- 150µV

Training & Objectives

• Can an intensive training of deficient auditory discrimination abilities in young dyslexic adults induce neurofunctional changes in non-verbal and verbal auditory perception?
 ➢ Individual Auditory Discrimination Training (IADT®)
 ➢ based on individual audiograms, 10 frequency-rich pieces of music were individually molded (3-5 times during intervention)
 ➢ subjects listened to the compositions for 15 min per day
 ➢ 15-months-long period, incl. 3 months of intermission
 ➢ aim: strengthening of the auditory sensitivity in speech-relevant frequencies

Stimuli

• passive odflb: constant ISI 500ms, at a constant 75dB (sine tones), n=400 stimuli (incl. two deviants, p=10% each) / block
• duration: tones = 100ms (incl. 10ms rise & fall) & verbal = 400ms
• three conditions:
 1. sine tones (optimal hearing range)
 std: 1800Hz, dev1: 2000Hz, dev2: 2200Hz
 2. sine tones (decisive in consonant discrimination)
 std: 3600Hz, dev1: 4000Hz, dev2: 4400Hz
 3. verbal (naturally spoken)
 std: AMA, dev1: ANA, dev2: ALA

Results

Non-verbal: 1800Hz vs. 2200Hz (Grand Average)

Non-verbal: 3600Hz vs. 4400Hz (Grand Average)

Verbal: AMA vs. ALA (Grand Average)

Discussion

• IADT® induced a substantial reorganization in basic central auditory functions
• a transfer effect of this reorganization was observed also for the auditory processing of verbal stimulation
• this suggests an auditory impairment of very basic processes to play a decisive role also in disturbed phonological processing in dyslexia
• despite IADT® being based on frequency modulations in musical pieces, it induced neurofunctional changes in the processing of verbal and non-verbal conditions
• durable plastic changes in auditory functions are evocable, if IADT® is insistently undertaken for a long-lasting intervention under controlled conditions

Literature & Framework

This study was supported by:
Finland’s Slot Machine Association, RAY
awarded to the Dysexia Assosiation in YtS-Savo, Finland

Kujala T. et al. (2003). Auditory sensory memory disorder in dyslexic adults as indexed by the mismatch negativity. European Journal of Neuroscience 17, 1243-1257

Address:
Swantje Zachau, Department of Finnish, Information Studies and Logopedics, Post Box 1000, 90014 University of Oulu, Finland
Swantje.Zachau@oulu.fi